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ABSTRACT

Satellite observations of temperature, water vapor, precipitation and longwave radiation are used to characterize
the variation of the tropical hydrologic and energy budgets associated with the El Nifio-Southern Oscillation
(ENSO). As the tropical oceans warm during an El Nifio event, the precipitation intensity, water vapor mass,
and temperature of the tropical atmosphere are observed to increase, reflecting a more vigorous hydrologic cycle.
The enhanced latent heat release and resultant atmospheric warming lead to an increase in the emission of
longwave radiation. Atmospheric global climate models, forced with observed sea surface temperatures (SSTs),
accurately reproduce the observed tropospheric temperature, water vapor, and outgoing longwave radiation
changes. However, the predicted variations in tropical-mean precipitation rate and surface longwave radiation
are substantially smaller than observed. The comparison suggests that either (i) the sensitivity of the tropical
hydrological cycle to ENSO-driven changes in SST is substantially underpredicted in existing climate models
or (ii) that current satellite observations are inadequate to accurately monitor ENSO-related changes in the
tropical-mean precipitation. Either conclusion has important implications for current efforts to monitor and
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predict changes in the intensity of the hydrological cycle.

1. Introduction

It has been suggested that warmer temperatures as-
sociated with increasing greenhouse gas emissions will
increase precipitation intensity (via an increase in sur-
face evaporation) and result in a more vigorous hydro-
logic cycle (IPCC 1996, p. 7 and references therein).
Given the potential social, environmental, and economic
consequences of such a scenario, developing a better
understanding of the mechanisms that force changesin
the hydrologic cycle and assessing the current skill of
climate models in predicting such changes are of ob-
vious importance. Climate variability associated with
ENSO provides coherent changesin surfacetemperature
and hydrologic variables that, while not necessarily a
surrogate for global warming (Lau et al. 1996), does
serve as a useful test bed for assessing the coupling
between various components of the hydrologic cycle
and for evaluating climate model performance. While
considerable effort has been devoted to describing the
regional changesin precipitation associated with ENSO,
|ess attention has been given to characterizing variations
in precipitation for the Tropics as a whole. Consequent-
ly, the skill of existing climate models in reproducing
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natural variations in precipitation intensity over the
Tropics and its coupling to other components of the
hydrologic and energy budgets is not well known al-
though its importance is clearly recognized (Chahine
1997).

To address this issue, satellite observations of pre-
cipitation, water vapor, tropospheric temperature, and
outgoing longwave radiation are compared with simu-
lations from a set of 30 different general circulation
models (GCMs). All GCMs were integrated with ob-
served sea surface temperatures (SSTs) for the period
1979-88 as part of the Atmospheric Modeling Inter-
comparison Project [AMIP; see Gates (1992) for de-
tails]. This period includes two warm *“El Nifio”” events
(1982-83, 1987-88) and two cold ‘‘La Nifia”’ events
(198485, 1988). Changes in the hydrologic cycle as-
sociated with ENSO are evaluated using satellite ob-
servations of precipitation from the microwave sound-
ing unit (MSU; Spencer 1993) and from the Special
Sensor Microwave Imager (SSM/I) as retrieved by Fer-
raro et al. (1996) and Wentz and Spencer (1998). Mea-
surements of column-integrated water vapor are taken
from the Scanning Multichannel Microwave Radiometer
(SMMR; Wentz and Francis 1992) and the SSM/I
(Wentz 1997). Observations of atmospheric temperature
are obtained from the MSU (Spencer and Christy 1990)
as well as from radiosonde analyses (Oort 1983); and
outgoing longwave radiation measurementsare acquired
from the Earth Radiation Budget Experiment (ERBE;
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Fic. 1. Map of the interannual difference in precipitation rate for a warm (El Nifio) period
minus a cold (La Nifia) period. The difference corresponds to DJF 1982/83 minus DJF 1984/
85 for (a) MSU observations and (b) AMIP simulations from the GFDL GCM.

Barkstrom 1984). These observations vary in length;
however, all provide overlap with some portion of the
AMIP study and thus provide an assortment of per-
spectives from which one can assess the skill of GCMs
in simulating ENSO-related variations in the hydrolog-
ical cycle.

2. Observed variations in the tropical hydrological
cycle during ENSO

It is widely recognized that ENSO is associated with
large regional changes in precipitation. These changes
and their seasonal dependence have been extensively
documented in many previous studies (e.g., Kiladis and
Diaz 1989; Rasmusson and Arkin 1993; Ropelewski and
Halpert 1996; Smith and Ropelewski 1997). Figure 1
shows the difference in P between a warm phase ([De-
cember—February (DJF)] 1982/83) and a cold phase
(DJF 1984/85) from MSU observations (Fig. 1a) and
AMIP GCM simulations (Fig. 1b). The GCM simula-
tions are from a model developed at the Geophysical

Fluid Dynamics Laboratory (GFDL; Wetherald et al.
1991). Note that MSU precipitation retrievals are not
performed over land. Such comparisons are useful for
evaluating a model’s skill in reproducing regional
changes in precipitation associated with ENSO and are
of great importance in their own right (e.g., Smith and
Ropelewski 1997). However, they are less suitable for
assessing the model’s skill in predicting changes in the
intensity of the hydrological cycle. This is because the
precipitation variations at the regional scale (order of
1000 km) primarily reflect altered patterns of moisture
transport rather than local changes in evaporation (Tren-
berth 1998). Consequently, the patterns of precipitation
change in Fig. 1 are largely determined by changes in
the large-scale atmospheric circulation and, hence, pro-
vide little insight into how the net precipitation for the
Tropics as awhole is affected by ENSO. A better mea-
sure of the sensitivity of the tropical hydrologic cycle
to ENSO may be obtained by considering the response
of the tropical-mean precipitation rate. To reduce the
effects of variations in moisture transport on the pre-
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Fic. 2. Time series of the tropical-mean interannual variations in
MSU precipitation (8P) (dashed line), MSU channel-2 tropospheric
temperature (8P2) (thick solid line), radiosonde-weighted channel-2
temperature (6T2,,,) (thin solid line), and the Nifio-3 SST index
(shaded). All interannual anomalies are computed with respect to a
base period of 1979-88. For clarity, all values have been smoothed
using a 5-month running mean.

cipitation, this study examines variations in tropical-
mean precipitation. Averaging over the entire Tropics
(defined here as 30°N—30°S and spanning all longitudes)
serves to reduce the effects of moisture transport that
dominate the smaller-scale spatial variations (order of
1000 km; Trenberth 1998). Tropical averages were cho-
sen over global averages due to the weakening of the
ENSO signal in the global averages of all fields, the
greater uncertainty in satellite precipitation measure-
ments over extratropical regions, and the lack of water
vapor and precipitation retrievals over land and ice-cov-
ered surfaces. While we recognize that the Tropics is
not a closed system and that meridiona transport of
moisture form the Tropics does occur (e.g., monsoonal
systems), the conclusions presented here are insensitive
to this restriction. Repeating the analysis for averages
between 60°N and 60°S leads to similar conclusions
regarding the sensitivity of the observed and model-
simulated hydrologic cycles, indicating that the they are
not dependent upon the domain size chosen.

Figure 2 shows the interannual variation in tropical-
mean precipitation rate from MSU (dashed line). This
quantity is denoted as (5P), where & represents the de-
viation from the seasonal climatology and ‘()" rep-
resents a spatially weighted average over the Tropics.
For reference the Nifio-3 SST index, defined asthe SST
anomaly averaged from 5°N to 5°S, and 90°W to 150°W,
is also shown. Higher than normal surface temperatures
in the tropical Pacific coincide with an increase in trop-
ical-mean precipitation and thus a more vigorous hy-
drological cycle during an El Nifio. Note that the var-
iations in tropical-mean precipitation are substantially
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smaller than the typical regional variations shown in
Fig. 1. Consequently, the tropical-mean precipitation
changes are of secondary importance to the regional
variations in explaining precipitation variability at any
particular location. Therefore, the relevance of exam-
ining tropical-mean variations is not for their role in
determining local changes (which are largely transport
dominated) but in examining how the intensity of the
tropical-mean hydrological cycle responds to changing
SSTs during ENSO. Although a trend toward positive
precipitation anomalies appears in the data, it is not
considered to be reliable. Recent analyses of MSU and
SSM/I measurements (Spencer and Robertson 1998,
personal communication) suggest that the MSU precip-
itation may be biased high after 1991 (although the
cause of this potential bias is not known; see section 5
for more discussion of possible errors in the precipi-
tation data).

Several earlier studies have also suggested that ENSO
modulates the intensity of the tropical hydrological cy-
cle (see Graham 1995). Radiosonde measurements re-
veal astrong correlation between interannual variations
in tropospheric temperature and SSTs in the equatorial
Pacific (Newell and Weare 1976; Pan and Oort 1990;
Angell 1990). The atmospheric warming is widely con-
sidered to result from an intensified tropical hydrologic
cycle during an El Nifio. Observationsindicate that dur-
ing an El Nifio elevated SSTs in the tropical Pacific
increase the rate of evaporation (Flohn and Kappala
1989) and, consequently, the rate of precipitation also
increases. It is believed that the resulting latent heat
release warms the tropical atmosphere (Yulaeva and
Wallace 1994) and produces the observed coupling be-
tween tropical Pacific SSTs and tropical atmospheric
temperature.

MSU measurements of tropospheric temperature and
precipitation are consistent with this picture. Figure 2
(solid line) shows the tropical-mean interannual varia-
tions in temperature from MSU channel 2 (6T2), which
measures the temperature over a deep layer of the tro-
posphere atmosphere (roughly 1000—2000 hPa; Spencer
and Christy 1990). Note the close correlation between
Nifio-3 SST, (6P), and (6T2), indicating that enhanced
SSTs in the tropical Pacific are associated with an in-
crease in tropical-mean precipitation that, in turn, co-
incides with a warming of the tropical atmosphere.
While previous studies have suggested that precipita-
tion-driven latent heat fluxes link Nifio-3 SSTs to the
atmospheric temperature variations, there have been few
(if any) attempts to directly verify this from observa-
tions.

Recent studies also suggest that the warming trend
in global tropospheric temperature since the mid-1970s
islinked to an enhancement of the tropical hydrological
cycle (Angell 1990; Flohn et al. 1990; Graham 1995;
Morrissey and Graham 1996; Diaz and Graham 1996).
Graham (1995) demonstrated that when forced with ob-
served SSTs the University of Hamburg ECHAM2
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Fic. 3. Time series of the tropical-mean interannual variations in
MSU channel-2 tropospheric temperature (5T) for 1979-89 (thin sol-
id line), radiosonde-weighted channel-2 temperature (8T2,,,,) for
1964-89 (thick solid line), GCM-weighted channel-2 temperature
(8T2,,) for 196488 (thick solid line), and the Nifio-3 SST index
(shaded). For clarity, al values have been smoothed using a 5-month
running mean.

GCM accurately reproduces observed trends in global-
mean surface air temperature. The upward trend in mod-
el-simulated temperature is caused by an enhancement
of the hydrological cycle due to increasing SSTs. Thus
the agreement between the observed and model-simu-
lated temperature variations provided evidence that (in-
directly) supported the model’s skill in predicting chang-
es in the hydrological cycle intensity. Comparisons be-
tween observed and model -predicted changes of tropical
freezing heights (Diaz and Graham 1996) and precipi-
tation trends over the tropical Pacific (Morrissey and
Graham 1996) provide further evidence of this conclu-
sion.

Figure 3 compares the observed variations in MSU
(8T2) (thin solid line) with that predicted from aversion
of the GFDL GCM (8T2;,) (thick dashed line) that
has been integrated with observed SSTs for the period
1946-88 and from Oort’s radiosonde analysis (6T2,,,,)
(thick solid line) for the period of 1964—89. Temperature
and humidity profiles from both the GCM and radio-
sonde observations were inserted into a radiative trans-
fer model (Eyre 1991) to compute the corresponding
MSU channel-2 brightness temperature. Note that de-
spite its poorer spatial coverage, the radiosonde analysis
accurately captures variations in tropical-mean tropo-
spheric temperature measured by MSU and can there-
fore be used to extend the observational record back to
1964. When evaluated over this longer time period, the
GCM closely reproduces the observed variations in tro-
pospheric temperature (with the exception of earlier
parts of the radiosonde record). The question that re-
mains, however, is to what extent this indirect compar-
ison provides evidence of the model’s ability to simulate
changes in the intensity of the tropical hydrological cy-
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cle. Thisquestion, which has also been raised previously
(Diaz and Graham 1996; Morrissey and Graham 1996),
is addressed in the next two sections by comparing the
observed relationships between precipitation, water va-
por, temperature, and outgoing longwave radiation to
that predicted by a set of 30 different GCMs.

3. Comparison of observed variations with AMIP
simulations

a. Precipitation rate

To evaluate the sensitivity of thetropical hydrological
cycle to ENSO, the observed changes in tropical-mean
precipitation are compared with that predicted by the
AMIP set of GCM simulations. Figure 4a shows the
time series of MSU observed (5P) from 1979 to 1996
(thick line). Also shown is the multimodel ensemble-
mean value of (6P) (thin line) from the 30 different
GCMs that participated in AMIP (Table 1). To be con-
sistent, both the M SU-observed and GCM-simulated in-
terannual variations are computed with respect to acom-
mon base period of 1979-88. Since the observations
are restricted to ocean surfaces, the model (6P) is also
averaged only from oceanic gridsto provide comparable
guantities. The multimodel ensemble-mean (5P) iscom-
puted by averaging all models for that particular month,
and the range bounded by = one intermodel standard
deviation in (6P) is shown as a vertical bar. Further
analysis of the intermodel variability is described in
section 4b.

The chief feature in this plot is the substantial dif-
ference between the observed and GCM-simulated var-
iation in tropical-mean precipitation. While the precip-
itation rate in both the observations and model simu-
lations tends to increase with SST, the magnitude of the
observed variations in (8P) is substantially larger than
that predicted by current GCMs and clearly lies outside
the range of intermodel variability. Also note that the
intermodel variability in (6P) is nearly as large as the
ensemble-mean ENSO signal. Thus, not only do the
GCMs differ with respect to the observations, but the
models also lack coherence among themselves. It is not-
ed, however, hat even the extreme models exhibit mark-
edly less precipitation variability than observed. For ex-
ample, the monthly standard deviation of (6P) (denoted
as a{6P)) computed separately for each of the 30 GCMs
ranges from 0.03 to 0.10 mm day—*, with an average
value of 0.06 mm day~*. In comparison, o(SP) from
MSU for the period 1979-88 is 0.18 mm day—*. For
typical tropical-mean precipitation rates (~3 mm
day~1), the observations suggest relative fluctuations of
roughly +6%, whereas the models typically yield about
one-third this value. If the observations are correct, this
would indicate that the sensitivity of the tropical-mean
hydrological cycleto ENSO-driven SST changesis sub-
stantially underpredicted in current models. Moreover,
the diversity of models considered here requires that
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FiG. 4. Time series of the tropical-mean interannual variations of observations (thick solid line)
and multimodel ensemble-mean of AMIP GCM simulations (thin solid line) for (a) precipitation
rate, (b) total precipitable water vapor, (c) 200-hPa atmospheric temperature, (d) OLR, and (e)
net surface longwave radiation. The range bounded by = one intermodel standard deviation is
represented by the vertical lines centered on the multimodel ensemble-mean GCM value. See text
for details. For clarity, both the observed and GCM-simulated time series have been smoothed
using a 5-month running mean. Typical values of the tropical-mean (total) observed fields are:
(P) = 3 mmday 1, (W) = 38 mm, (T, = 220 K, (OLR) = 250 W m~2, (LWy) = —50 W

m-2,

this error not be sensitive to the differing physical pa-
rameterizations between existing GCMs. Rather, if the
GCMs are in error, this deficiency would presumably
reflect a more fundamental flaw common to all models.

An alternative explanation is that the MSU precipi-
tation observations contain a systematic error that is
correlated with ENSO. Of particular concern is the po-
tential for interannual variations in tropospheric tem-
perature to influence the microwave emission signal and
thereby bias the precipitation estimate. While the po-
tential for such an error is known to exist, its magnitude
is not (e.g., Spencer et a. 1998). Indeed, the sensitivity
of the passive microwave precipitation retrievalsto tem-
perature variations is not well known and clearly re-
quires further attention. A definitive resolution of this
issue will obviously require a detailed analysis of var-
ious microwave-based rainfall algorithms to determine
their temperature sensitivity. While such an analysisis
beyond the scope of the present study, this study does
provide some evaluation of the MSU product by com-
paring variations (6P) from MSU with that obtained
from various SSM/I retrievals (section 5). While this
certainly does not represent a*‘ ground-truth’” validation
of the MSU product, it does provide some indication of
how it compares to other retrievals.

b. Water vapor

It is useful to examine the model simulations of other
components of the tropical hydrologic and energy bud-
gets, to determine if they also exhibit discrepancieswith
the observations. Figure 4b presents a time series of the
interannual variations in tropical-mean precipitable wa-
ter (W) derived from SMMR for 1979-84 and SSM/I
for July 1987-1996. The local (rms) errors in SSM/I
retrievals of W are estimated to be ~1.2 mm, with time-
mean biases of ~0.6 mm (Wentz 1997). Also shown is
the multimodel ensemble-mean and intermodel standard
deviation of (6W) from the AMIP GCM simulations.
For consistency, the interannual variations in SMMR
observations and GCM simulations are computed with
respect to a base period of 1979-84. The SSM/I ob-
servations provide only 18 months of overlap with the
GCM simulations (July 1987-December 1988) and
therefore use a different base period (1988-96) for com-
puting the interannual variability. Both the observations
and model predictions clearly show that the total at-
mospheric water vapor mass increases during the warm
events (1982-83, 1987-88) and decreases during the
cold events (1984-85, 1988-89). In contrast to the pre-
cipitation variations, the GCMs exhibit good agreement
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TABLE 1. List of AMIP models.

No Acronym AMIP group Resolution

1 BMRC Bureau of Meteorology Research Centre R31 L9

2 CCC Canadian Centre for Climate Modelling and Analysis T32L10

3 CNRM Centre National de Recherches Météorologique T42 L20

4 Csu Colorado State University 4 X 5L17

5 DERF Dynamical Extended Range Forecasting (at GFDL) T42 118

6 ECMWF European Centre for Medium-Range Weather Forecasts T42 L19

7 GFDL Geophysical Fluid Dynamics Laboratory R30 L14

8 GISS Goddard Institute for Space Studies 4X5L9

9 GLA Goddard Laboratory for Atmospheres 4 X 5L17
10 GSFC Goddard Space Flight Center 4 X 5L20
11 IAP Institute of Atmospheric Physics 4X 412
12 IMA Japan Meteorological Agency T42 L21
13 MGO Main Geophysical Observatory T30 L14
14 MPI Max-Planck Institut fur Meteorologie T42 L19
15 MRI Meteorological Research Institute 4 X 5L19
16 NCAR National Center for Atmospheric Research T42 L18
17 NMC National Meteorological Center T40 L18
18 NRL Naval Research Laboratory T47 L18
19 SUNYA/NCAR State University of New York at Albany/National Center for Atmospheric Research  T31 L18
20 UCLA University of California, Los Angeles 4 X 5L15
21 UGAMP U.K. Global Atmospheric Modelling Programme T42 L19
22 uluc University of Illinois at Urbana—Champaign 4 X 5L7
23 YONU Yonsei University 4 X5L5
24 COLA Center for Ocean-Land-Atmospheric Studies R40 L18
25 CSIRO Commonwealth Scientific and Industrial Research Organization R21 L9
26 DNM Department of Numerical Mathematics 4 X5L7
27 LMD Laboratoire de Météorologie Dynamique 3.6 X 56L11
28 SUNYA State University of New York at Albany R15 L12
29 UKMO United Kingdom Meteorological Office 25X 3.75L19
30 CCSR Center for Climate System Research T21L20

with both the magnitude and sign of the observed chang-
es in water vapor. This result is significant for two rea-
sons. First, it demonstrates the models' ability to predict
SST-driven changesin tropical-mean water vapor, which
isan important aspect of GCMs climate simul ationsthat
had been previously questioned (Sun and Held 1996;
Chou 1994). Second, it indicates that the residual be-
tween evaporation and precipitation, namely, the change
in water vapor storage by the atmosphere, is well rep-
resented in the GCMs. Thus, if ENSO-driven changes
in tropical-mean precipitation are being systematically
underestimated in GCMs, this deficiency is not attrib-
utable to errors in the simulated water vapor field (e.g.,
not enough water vapor to condense).

¢. Atmospheric temperature

The interannual changes of the latent heat release
from precipitation may be estimated by scaling (5P) by
28.9 W m~2 (mm day—1). Accordingly, the observed
(6P) implies changes in tropical-mean latent heating of
roughly £6 W m~-2 between warm and cold ENSO
events, whereas the typical model-simulated changesare
roughly a factor of 4 smaller. Since changes in latent
heat release are a primary source of energy for warming
the atmosphere during El Nifio (Graham 1995), one
might expect that systematic differences in tropical-
mean precipitation would result in differences in tro-

pospheric temperature variations. Figure 4c compares
the interannual variations in tropical-mean temperature
at 200 hPa (8T ) determined from radiosonde analyses
(Oort 1983) to the GCM simulations. Both the observed
and model-simulated interannual variability are com-
puted with respect to a common base period (1979-88).
Radiosonde analyses are used rather than MSU tem-
perature measurements because AMIP archived tem-
peratures only at 200 and 850 hPa. Hence, reconstruc-
tion of the deep-layer mean temperaturesfor comparison
with MSU is not possible. As expected, the observed
variations in tropical-mean temperature (8T,,,) are
closely reproduced by the GCMs. Given the close cou-
pling between changes in latent heat release (i.e., pre-
cipitation) and atmospheric temperature suggested by
earlier studies and from the GCM, it is natura to cite
this agreement as evidence of the skill of the GCM in
predicting changes in the hydrologic cycle intensity
(e.g., Graham 1995). Indeed, the extent of agreement
between the observed and modeled temperature varia-
tions is quite surprising given the magnitude of their
differences in (6P). This would suggest that either the
observed variations in (6P) are incorrect (which is dis-
cussed further in section 5) or that there is some other
systematic error in the GCM energy budgets that com-
pensates for the difference in latent heat release. Given
that the GCMs considered here differ significantly in
their physical parameterization, the source of model er-
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ror would not only have to be insensitive to details of
the model physics but, more importantly, be consistently
manifest in al the GCMs.

d. Radiation

Over the Tropics, the latent heat released fromtropical
precipitation is largely offset by radiative cooling due
to the emission of outgoing longwave radiation (OLR)
to space (Pierrehumbert 1995). Consequently, the at-
mospheric temperature change is primarily determined
by the residual between changes in latent heat release
and OLR (Graham 1995). Thus it is conceivable that a
model could underpredict the increase in tropical-mean
precipitation during an El Nifio, yet accurately simulate
the atmospheric warming if the increase in model-sim-
ulated radiative cooling was also underpredicted. That
is, mutualy consistent errors in the ENSO-driven
changes of latent heating (i.e., precipitation) and radi-
ative cooling (i.e., OLR) of the models could conceiv-
ably offset each other in such a way as to produce a
realistic temperature change.

To investigate this possibility, the observed interan-
nual variation in tropical-mean outgoing longwave ra-
diation (6OLR) from ERBE is compared to that obtained
from the AMIP GCM simulations for the period 1985—
88 (Fig. 4d). To eliminate the effects of calibration dif-
ferences between satellite instruments (Thomas et al.
1995), only observations from one satellite (ERBS) are
considered here. Aswith (SW) and (8T ,q,), the observed
variations in (6OLR) exhibit relatively good agreement
with the AMIP GCM simulations, suggesting that errors
in the infrared radiative cooling do not explain the cur-
rent discrepancy.

In addition to OLR, the other term in the longwave
radiative cooling budget is the net flux of downwelling
radiation at the surface, LW, (Graham 1995). While
retrieval of LW, from satellite observations is difficult
at best, some attempts have been made. Figure 4e com-
pares the observations of (SLW,.) from the dataset of
Darnell et a. (1996) with that predicted from the 30
GCMs. Interestingly, the observed variations are sub-
stantially larger than simulated by the models. The sign
is such that the GCMs tend to underestimate (overes-
timate) the anomalies in radiative heat lost from the
atmosphere to the surface during a warm (cold) ENSO
event by about 5 W m~2. Thus both the magnitude and
sign of the LW, anomalies are, to first order, consistent
with the discrepancy between the observed and GCM-
simulated precipitation anomalies. However, given the
considerable uncertainty involved in retrieval of LW,
it is not clear if thisis simply a coincidence or if it is
a true manifestation of systematic errorsin the GCM¢s
hydrologic and energy budgets.

Other components of the energy budget that are dif-
ficult to observe, but whose variations are considered
to be of secondary importance (Graham 1995), are sen-
sible heat flux and the absorption of solar radiation. The
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latter quantity is one in which there has been consid-
erable debate regarding the accuracy of its representa-
tion in current GCMs, particularly the absorption of
solar radiation by clouds (Cess et al. 1996). While this
mechanism could provide a systematic source of error
in all models, it is unclear whether the error would be
of the correct sign, let alone the correct magnitude, to
explain the discrepancy presented here. Compensating
for the discrepancies between observed and model-sim-
ulated latent heating (inferred from (SP)) would require
interannually varying errors in tropical-mean solar ab-
sorption of ~4-5 W m~2.

4. Relationship with sea surface temperature
a. Ensemble-mean results

To help quantify the differences between the obser-
vations and models, Fig. 5 shows a scatterplot of (5P),
(6W), (8T ), and (SOLR) versus the corresponding
value of (8SST) for both the observations (open circles)
and the multimodel ensemble-mean of the AMIP GCM
simulations (filled circles). Pearson correlation coeffi-
cients (r) and least squares linear regression slopes ()
are listed in Fig. 5. For each quantity, the scatterplot is
constructed from only those months for which both ob-
servationsand AMIP simulations are avail able, ensuring
a consistent sampling of the two quantities. For both
the observations and models, all four quantities (P, W,
T, and OLR) are well correlated with SST. The cor-
relations in the GCMs for al quantities are systemati-
cally larger than those from the observations, since en-
semble averaging of the GCM results reduces the cli-
mate ‘' noise.” For W, T,,,, and OLR, therate of increase
with increasing SST predicted by the models agreeswell
with the observed values. However, for tropical-mean
precipitation, the observed rate of increase with SST is
roughly afactor of 4 larger than predicted by the GCMs.
Interestingly, the slopes for the GCM simulations of W,
T,e, and OLR all tend to be ~20% smaller than their
observed counterpart. Whether or not this differencein
slopes is meaningful is unclear; however, the fact that
it shows up consistently in al three variables (W, OLR,
T,e0) 1S NONetheless intriguing.

b. Intermodel variability

The preceding results have largely focused on the en-
semble-mean behavior of the 30 different GCMs. How-
ever, thereis, of course, considerable variability from one
model to the next. The above statements largely reflect
the ensemble characteristics of the models, rather than a
universal statement of all models. In addition to com-
paring the multimodel ensemble-mean GCM resultswith
the observations, Fig. 4 also shows the magnitude of the
intermodel variability relative to the amplitude of the
tropical-mean variations for any particular month. A key
feature here is that the intermodel variability in (6P) is
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Fic. 5. Scatterplot of the tropical-mean interannual variationsin (a) precipitation rate, (b) total
precipitable water vapor, (c) atmospheric temperature, and (d) OLR as a function of the tropical-
mean interannual variations in SST. Tropical averages of precipitation and precipitable water are
from ocean regions only. Results are shown for both observations (open circles) and the ensemble-
mean of the AMIP GCM simulations (filled circles). Linear correlation coefficients (r) and least
squares regression slopes (s) for both the observations (dotted line) and models (solid line) are
also shown. All values were smoothed using a 5-month running mean before computing the

regression and correlation coefficients.

nearly as large as the ENSO signal in the ensemble-mean
GCM simulations (but still smaller than the observed
ENSO signal). On the other hand, for (W), (8T ,,), and
to a dightly lesser extent (SOLR), the amplitude of the
ENSO signa clearly stands out above the intermodel
variability. This shows that not only is the multimodel
ensemble-mean behavior of the GCMs in better agree-
ment with the observations for the latter three quantities,
but also that the GCMs are also in better agreement with
each other in terms of the amplitude of the tropical-mean
variation for any particular month.

To further highlight the intermodel variability, Fig. 6
compares the slope of the linear regression between the
tropical-mean interannual variation of each of the four
guantities versus (6SST). The slopes were computed
separately for each of the 30 GCMs considered above
(listed in Table 1) as well as for the observations. The
dashed line represents the slope computed from the en-
semble-mean of the 30 GCMs (i.e., the slopes shown
in Fig. 5). To emphasi ze the lower-frequency variations
and maintain consistency with Fig. 5, al values are
smoothed using a 5-month running mean before com-
puting the regression. Two points are to be made with
this analysis. The first is that for a given increase in
(86SST), the observed increase in (6P) is not only much
larger than the ensemble mean of the GCMs (dashed
line), but it also overshadows al of the models indi-

vidually. In contrast, the observed increases for (6W),
(8T 5507, and (SOLR) are much more consistent with the
GCM predictions, clearly lying within the range of in-
termodel variability. This is perhaps most clearly illus-
trated by considering the number of GCMs for which
the predicted slope falls within a factor of 2 of the
observed slope. For (8W) this number is 28 out of 30
models, for (6T, it is 27/30, and for (SOLR) 21/30.
However, for (8P) only 2 out of 30 GCMs fall within
a factor of 2 of the observed slope.

The second point is that the GCM-simulated slopes
for (8P) exhibit a wide range of values, indicating little
consistency among the models. In contrast, the model-
simulated slopes for (W) and (8T ,,,) are in much better
agreement with each other. Interestingly, there alsotends
to bealarger range of intermodel variability for (SOLR).
This may be attributable to differences in the model
predictions of cloud cover variations, which also influ-
ence the OLR. Furthermore, of the four variables ex-
amined, OLR has the shortest record of observations
(only 4 yr). Thus the shorter time period for the analysis
may also contribute to the greater intermodel variability.

5. Intercomparison of tropical-mean precipitation
measur ements

The other possible explanation for the discrepancy in
(6P) is that the MSU retrieval is in error. This is of
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FiG. 6. Bar graph of the least squares regression slope of the tropical-mean interannual variations
in (a) precipitation rate, (b) total precipitable water vapor, (c) 200-hPa atmospheric temperature,
and (d) OLR as a function of the tropical-mean interannual variations in SST. Results are shown
separately for all 30 GCMslisted in Table 1 (dark shading) and for the observations (light shading).
The dashed line represents the slope computed from the multimodel ensemble mean of the 30
GCMs (i.e., the slopes shown in Fig. 5). To emphasize the lower-frequency variations, all values

were smoothed using a 5-month running mean before computing the regression.

particular concern given the relatively small magnitude
of (6P) and the inherent difficulty of accurately mea-
suring precipitation. The most comprehensive evalua-
tion of passive microwave satellite retrievals to date is
the Precipitation Intercomparison Project 2 (PIP-2). Re-
sults from this project, which eval uated the performance
of 20 different SSM/I algorithms, suggest bias uncer-
tainties in retrieved precipitation of roughly +30% for
most algorithms (Smith et al. 1998). Note that this un-
certainty was considered to be smaller than that of the
radar and rain gauge data collected for validation. Since
the amplitude of (6P) observed by MSU (Fig. 4) is
roughly *+10%, it falls within the uncertainty range of
PIP-2. However, it is important to note that PIP-2 com-
pared retrievals at full-resolution instantaneous space—
timescales. Since the error characteristics are likely to
be scale dependent, point comparisons like PIP-2 may
not necessarily provide appropriate estimates of the un-
certainty in microwave-based retrievals of (SP). Sources
of error that are dominant for point comparisons (e.g.,
subpixel variability) are not the same for tropical-mean
anomalies. The latter average out spatially uncorrelated
errors, but they are more susceptibleto errorsintroduced
by temperature or cloud liquid water variations that are
locally small but that occur systematically throughout
the Tropics in association with ENSO.

Unfortunately, there are no in situ measurementswith

sufficient spatial coverage to validate tropical-mean sat-
ellite measurements; therefore, the error characteristics
of the satellite observations at these large spatial scales
remain poorly understood. Since the enhanced sensitiv-
ity of (6P) is clearly associated with ENSO, the most
likely source of error would come from contamination
of the upwelling microwave radiance by ENSO-related
changes in water vapor, cloud liquid water, and atmo-
spheric or surface temperature that could bias the am-
plitude of the retrieved precipitation. However, this ex-
planation remains speculative. The only other study to
critically examinetropical-mean precipitation anomalies
(Spencer et a. 1998) reached the same conclusion, that
is, that uncertainties associated with aliasing tempera-
ture variations into the precipitation retrieval s represent
a potential, but currently unknown, source of error that
requires further attention from the retrieval community.

Since ground-truth measurements are not available
for (5P), one way of assessing thereliability of the MSU
product is to intercompare its measurements with that
obtained from other satellite retrievals. The SSM/I,
which has been in operation since July 1987, contains
better frequenciesfor rainfall retrieval and also provides
the opportunity to intercompare rainfall measurements
using different retrieval strategies. Figure 7 compares
the tropical-mean interannual variation in precipitation
from MSU (solid line) with that using the SSM/I re-
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Fic. 7. Comparison of the tropical-mean interannual variations in
precipitation rate (SP) from various satellite measurements. The in-
terannual anomalies are computed with respect to a base period of
1988-96. Consequently, the MSU (6P) differs slightly from that pre-
sented in Fig. 2 (which used a base period of 1979-88). For clarity,
all values have been smoothed using a 5-month running mean.

trievals of Wentz and Spencer (1998) (dotted line) and
Ferraro et al. (1996) (dashed line). The Wentz and Spen-
cer algorithm uses the emission signal in the 19-, 22-,
and 37-GHz channels of SSM/I to estimate precipitation
rates. The algorithm is designed to orthogonalize the
retrievals so that ‘““ cross talk’” between parameters such
as water vapor and rainfall is minimized (i.e., errorsin
retrieved rain rate are uncorrelated with errors in re-
trieved water vapor). This algorithm also adjusts for the
effects of air temperature and cloud liquid water on the
microwave radiance. The Ferraro et a. (1996) algorithm
is based upon the scattering signature of precipitation
in the 85-GHz channel (Grody 1991) supplemented by
the Weng and Grody (1994) emission technique over
oceans. Due to the failure of the 85-GHz channels no
retrievals are available from this algorithm during the
period of July 1990-December 1991.

Comparison of the interannual variations between the
SSM/I and MSU measurements (Fig. 7) reveal s reason-
ably good agreement from 1988 to 1992; however, they
diverge between mid-1992 and 1994. The lack of co-
herence between the retrievals during this period may
partly reflect the impact of Mount Pinatubo aerosols on
the precipitation retrievals (Spencer et al. 1998). It is
also noteworthy that all retrieval s show noticeably larger
variations in (8P) than predicted by the GCMs. Thisis
particularly evident for the 1988/89 La Nifia where all
three retrievals exhibit a marked reduction in (8P). Lin-
ear regression of (8P) versus (8SST) for the period of
1988-96 (not shown) yields slopes of 0.41 mm day—*
K-t for MSU, 0.53 mm day—* K-* for the Wentz and
Spencer algorithm, and 0.69 mm day—* K- for the Fer-
raro algorithm. Note that the slopes differ by roughly
+25%, athough there is no indication that the MSU
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Fic. 8. Comparison of the tropical-mean interannual variations in
precipitation rate (6P) from MSU and CMAP The interannual anom-
alies are computed with respect to a base period of 1979-88. For
clarity, all values have been smoothed using a 5-month running mean.

measurements overestimate the changes in (6P). Indeed
for the period 1988-96, the MSU measurements tend
to be slightly less sensitive to changes in SST than do
either of the SSM/I retrievals considered here. Thus if
the large variability in the MSU (8P) is erroneous, then
this problem is apparently shared by other precipitation
products that use different frequency channels and dif-
ferent retrieval algorithms. This suggests that simply
attributing the discrepancy between observed and GCM-
simulated variations in (6P) to observational error in
the MSU product may be premature. It is also noted
that Spencer and Robertson (1998, personal commu-
nication) find very good agreement between tropical-
mean anomalies of precipitation from SSM/I and an
MSU index of deep convection.

In choosing precipitation measurementsfor the above
comparison, attention was restricted to products derived
from a single instrument, rather than from datasets pro-
duced by merging several different measurement sys-
tems. An example of the latter is the Climate Prediction
Center Merged Analysis of Precipitation (CMAP) prod-
uct (Xie and Arkin 1997), which combines microwave
and infrared measurements from multiple satelliteswith
surface gauge measurements and model analyses. While
this product has several advantages over single-mea-
surement climatologies like MSU, one potential limi-
tation is that temporal discontinuities in the availability
or sampling of individual data sources can hinder the
ability to detect the small, time-dependent anomalies of
(6P). Figure 8 compares time series of (8P) from both
MSU and CMAP (averaged only from oceanic regions).
Note that both the CM AP and M SU measurements show
much larger variationsin (6P) than do the GCMs. How-
ever, even though CMAP uses MSU in its composite
product, the time series of (6P) are substantially dif-
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ferent. Interestingly, the CMAP measurements exhibit
little correlation with changesin SST, in contrast to both
MSU observations and most models. The cause of this
difference is unclear and obviously indicates a problem
in either the MSU or CMAP products (or both). The
comparison also underscores the discrepancies that exist
between the current precipitation climatologies and the
challenge of accurately monitoring changes in the in-
tensity of the hydrological cycle.

6. Discussion

Satellite observations of the ENSO-driven changesin
tropical-mean precipitation, water vapor, temperature,
and outgoing longwave radiation were compared with
simulations from a set of 30 different GCMs. In both
observations and GCM simulations, the precipitation
increases during a warm phase of ENSO; however, the
magnitude of the model-predicted change is roughly a
factor of 4 smaller than observed. In contrast, the model-
simulated changes in tropical-mean water vapor, at-
mospheric temperature, and outgoing longwave radia-
tion all demonstrate very good agreement with the ob-
servations. Given the close coupling that these quanti-
ties have to the hydrologic and energy budgets, this
evidence would seem to support of the models' skill in
simulating changes in hydrological cycleintensity (Gra-
ham 1995). However, the extent to which the compar-
ison of (8T, (and similarly (6W), (6OLRY)) provides
atest of the models’ skill in predicting changes in hy-
drological cycle intensity is not entirely clear. For ex-
ample, one can view the tropical climate from the per-
spective of an atmosphere in radiative—convective equi-
librium. Such an atmosphere responds to surface tem-
perature perturbations by restoring the atmospheric
temperature profile to closely follow a moist-adiabatic
lapse rate. Thus, when examining temperature changes
predicted by a GCM forced with observed SSTs, oneis
therefore faced with the following dilemma: is the at-
mospheric temperature determined by the balance of
radiative and latent energy fluxes predicted by the mod-
el, or isthe balance of radiative and latent energy fluxes
in the model determined by the atmospheric temperature
(i.e., the need for the atmosphere to follow a moist
adiabat)? For example, if a GCM (forced with observed
SSTs) did contain a systematic error in one term of the
energy budget (e.g., surface radiative cooling), would
the impact of this error be manifest in the GCM’s tem-
perature field or would the model still adjust to a moist
adiabat, thereby forcing a compensating error in some
other term of the energy budget (e.g., latent heat flux)?

These questions are posed mainly to suggest that
agreement between observed and GCM-simulated
(8T 5007, (6W), and (SOLR), whileinformativeinitsown
right, may not necessarily provide enough evidence to
dismiss the possibility of errors in the GCM-simulated
(6P). Nevertheless, the inherent coupling of the hydro-
logic and energy budgets does place some constraints
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on this analysis. It suggests that if the variability in
tropical-mean precipitation is being underestimated in
current GCMs, then there must also be a compensating
error in the tropical energy budget in order for the mod-
els to reproduce the agreement with observed air tem-
perature variations. Furthermore, given the prevalence
of this discrepancy, the source of error would presum-
ably be common to all GCMs. That is, the deficiency
would not be attributable to a particular physical pa-
rameterization or model resolution, but rather would
result from a more fundamental error that occursin all
GCMs. The possibility that the errorsin GCM-simul ated
(6P) may be associated with errorsin (5LWy,) (see Fig.
4) isintriguing and illustrates the intrinsic coupling be-
tween the energy and the hydrologic budgets. If true,
the cause of such an error might be related to boundary
layer clouds, which exhert a strong influence over the
LWy, and are known to be poorly represented in many
GCMs.

The other possible explanation is that the satellite re-
trievals systematically overestimate the amplitude of the
interannual variability in tropical-mean precipitation and
the net LW cooling of the surface. A primary difficulty
in identifying the cause of the discrepancy between ob-
served and model-simulated (8P) (and (6LW,)) stems
from a lack of knowledge of the error characteristicsin
the retrievals at these spacescales and timescales. While
measurements from different sensors and different a-
gorithms tend to support the magnitude of the MSU-
retrieved (6P) (e.g., Spencer and Robertson 1998, per-
sonal communication), further work is necessary to better
define this aspect of the precipitation products. If the
observations are incorrect, it would suggest that current
observations are inadequate to accurately describe chang-
es in the intensity of the tropical hydrologic cycle.

Clearly, considerable progress is required before we
can have confidence in our ability to both monitor and
predict changes in the intensity of the hydrologic cycle.
Given the possihility of future changes associated with
global warming, this issue certainly warrants further at-
tention.

Acknowledgments. Comments from Phil Arkin, Nich-
olas Graham, Isaac Held, Steve Klein, Gabriel Lau, Jer-
ry Mahlman, Pete Robertson, and two anonymous re-
viewers greatly improved the clarity and content of this
paper. Some of the datasets used in this study were
provided by the NASA Langley DAAC, the NASA JPL
DAAC, and Remote Sensing Systems.

REFERENCES

Angell, J. K., 1990: Variation in global tropospheric temperature after
adjustment for the EL Nifio influence, 1958-1989. Geophys. Res.
Lett., 17, 1093-1096.

Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment
(ERBE). Bull. Amer. Meteor. Soc., 65, 1170-1185.

Cess, R. D., M. H. Zhang, Y. Zhou, and V. Dvortsov, 1996: Absorption
of solar radiation by clouds: Interpretation of satellite, surface



1 FEBRUARY 2000

and aircraft measurements. J. Geophys. Res., 101, 23 299—
23 309.

Chahine, M., 1997: Accelerating the hydrological cycle. GEWEX
News, May.

Chou, M. D., 1994: Coolnessin the tropical Pacific during an El Nifio
episode. J. Climate, 7, 1684—-1692.

Darnell, W. L., W. E Staylor, N. A. Ritchey, S. K. Gupta, and A. C.
Wilber, 1996: Surface radiation budget: A long-term global da-
taset of shortwave and longwave fluxes. [Available online at
http://www.agu.org/eos_el ec/95206e.html ]

Diaz, H. F, and N. E. Graham, 1996: Recent changes in tropical
freezing heights and the role of sea surface temperatures. Nature,
383, 152-155.

Eyre, J. R., 1991: A fast radiative transfer model for satellite sounding
systems. ECMWF Tech. Memo. 176, 28 pp.

Ferraro, R., E Weng, N. Grody, and A. Basist, 1996: An eight-year
(1987-1994) time series of rainfal, clouds, water vapor, snow
cover, and sea ice derived from SSM/I measurements. Bull.
Amer. Meteor. Soc., 77, 891-905.

Flohn, H., and A. Kappala, 1989: Changes of tropical sea—air inter-
action processes over a 30-year period. Nature, 262, 244—266.

——, ——, H. Knoche, and H. Machel, 1990: Recent changes of the
tropical water and energy budget and of midlatitude circulations.
Climate Dyn., 4, 237-252.

Gates, W. L., 1992: AMIP: The Atmospheric Model |ntercomparison
Project. Bull. Amer. Meteor. Soc., 73, 1962—1970.

Graham, N. E., 1995: Simulation of recent global temperature trends.
Science, 267, 666-671.

Grody, N. C., 1991: Classification of snow cover and precipitation
using the Special Sensor Microwave/lmager. J. Geophys. Res.,
96, 7423-7435.

IPCC, 1996: Climate Change 1995: The Science of Climate Change.
Cambridge University Press, 572 pp.

Kiladis, G., and H. Diaz, 1989: Global climatic anomalies associated
with extremes in the Southern Oscillation. J. Climate, 2, 1069—
1090.

Lau, K. M., C. H. Ho, and M. D. Chou, 1996: Water vapor and cloud
feedback over the tropical oceans: Can we use ENSO as a sur-
rogate for climate change? Geophys. Res. Lett., 23, 2971-2974.

Morrissey, M. L., and N. E. Graham, 1996: Recent trends in rain
gauge precipitation measurements from the tropical Pacific: Ev-
idence for an enhanced hydrologic cycle. Bull. Amer. Meteor.
Soc., 77, 1207-1219.

Newell, R. E., and B. C. Weare, 1976: Ocean temperatures and large-
scale atmospheric variations. Nature, 262, 40-41.

Oort, A. H., 1983: Globa atmospheric circulation statistics, 1958—
1973. NOAA Prof. Paper 14, 180 pp.

Pan, Y. H., and A. H. Oort, 1990: Correlation analyses between sea
surface temperature anomalies in the eastern equatorial Pacific
and the world ocean. Climate Dyn., 4, 191-205.

SODEN

549

Pierrehumbert, R. T., 1995: Thermostats, radiator fins, and the local
runaway greenhouse. J. Atmos. Sci., 52, 1784-1806.

Rasmusson, E., and P Arkin, 1993: A global view of large-scale
precipitation variability. J. Climate, 6, 1495-1521.

Ropelewski, C. F, and M. Halpert, 1987: Global and regional scale
precipitation patterns associated with the El Nifio/Southern Os-
cillation. Mon. Wea. Rev., 115, 1606-1626.

——, and ——, 1996: Quantifying Southern Oscillation—precipitation
relationships. J. Climate, 9, 1043-1059.

Smith, E. A., and Coauthors, 1998: Results of WETNET PIP-2 Proj-
ect. J. Atmos. i, 55, 1483-1536.

Smith, T. M., and C. E Ropelewski, 1997: Quantifying Southern
Oscillation—precipitation relationships from an atmospheric
GCM. J. Climate, 10, 2277-2284.

Spencer, R. W., 1993: Global oceanic precipitation from the MSU
during 1979-91 and comparisons to other climatologies. J. Cli-
mate, 6, 1301-1326.

——, and J. R. Christy, 1990: Precise monitoring of global temper-
ature trends from satellites. Science, 247, 1558-1562.

——, FE J. LaFontaine, T. DeFelice, and F J. Wentz, 1998: Tropical
oceanic precipitation changes after the 1991 Pinatubo eruption.
J. Atmos. i, 55, 1707-1713.

Sun, D. Z., and |. M. Held, 1996: A comparison of modeled and
observed relationships between interannual variations of water
vapor and temperature. J. Climate, 9, 665-675.

Thomas, D., J. P Duvel, and R. Kandel, 1995: Diurnal bias in cali-
bration of broad-band radiance measurements from space. |EEE
Trans. Geosci. Remote Sens., 33, 670—683.

Trenberth, K. E., 1998: Atmospheric moisture residence times and
cycling: Implications for rainfall rates with climate change. Cli-
matic Change, 39, 667-694.

Weng, F, and N. C. Grody, 1994: Retrieval of cloud liquid water
using the special sensor microwave imager. J. Geophys. Res.,
99, 22 535-22 551.

Wentz, F J., 1997: A well-calibrated ocean algorithm for SSM/I. J.
Geophys. Res., 102 (C4), 8703-8718.

——, and E. A. Francis, 1992: Nimbus-7 SMMR ocean products,
1979-1984. Remote Sensing Systems Tech. Rep. 033192, 36 pp.
[Available from Remote Sensing Systems, 1101 College Ave.,
Santa Rosa, CA 95404.]

——, and R. W. Spencer, 1998: SSM/I rain retrievals within a unified
al-weather ocean algorithm. J. Atmos. Sci., 55, 1613-1627.

Wetherald, R. T., V. Ramaswamy, and S. Manabe, 1991: A compar-
ative study of the observations of high clouds and simulations
by an atmospheric general circulation model. Climate Dyn., 5,
135-143.

Xie, P, and P. Arkin, 1997: Global precipitation: A 17-year monthly
analysis based on gauge observations, satellite estimates, and
numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539—
2558.

Yulaeva, E., and J. M. Wallace, 1994: The signature of ENSO in
global temperature and precipitation fields derived from the Mi-
crowave Sounding Unit. J. Climate, 7, 1719-1736.



